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0. Introduction 

The present work investigates the relationship between the K-theory and the homol- 

ogy of linear groups in low degrees. The motivations and applications of this problem 

are explained in [lo, Ill. The principal results are summarized below. Let R be a 

commutative Hl-ring (e.g. a semi-local ring with infinite residue fields). We have, 

Theorem 1.22. The morphism H3(G&(R); 63) -+ H3(GL3(R); Q) induced by GL2(R) ----f 

GL3(R), 9~ (fi y), is injective. 

In connection with algebraic K-theory, if K, M denotes the Milnor K-theory of R, 

define the indecomposable part K3(R)i”d to be Kj(R)/ImKy. We have, 

Theorem 2.2. Let R be a (commutative) HI-ring. We have an isomorphism: 

K3(R)zd Z HO(RX; H3(&(R); 0)). 

Moreover, by (2.5), we can identify the indecomposable K3 of R with the weight 

two part of the “Adams decomposition” of K3. 
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The present work is organized as follows: Section 1 is devoted to the proof of the 

injectivity of the morphism 

HdGMR); Q) + H3(GLdR); Q>, 

induced by the map G&(R) + G_&(R), LJH (I: y). The complete argument is fairly 

complicated and the “devissage” of the spectra1 sequence involved is carefully ex- 

plained. Section 2 is devoted to establishing the relationship between the previous 

results and K-theory. Section 3 is a short comment on related works and problems. 

In the appendix all the specific tools that we use in this paper can be found. 

1. The injectivity of Hs(GZ4R); Q) + H3(GLs(R); Q) 

Recall that if R is a ring and M a right R-module, then an element u of M is said 

to be unimodular if there exists a linear form f : M + R such that f(u) = 1. We will 

let Urn(M) denote the set of unimodular elements in M. The stable rank of R, denoted 

by sr(R), is the smallest integer n > 1 such that the following property holds: 

(SK,) 
for all (al,..., a,,+1 ) E Um(R"+' ), there exist bi, . . . , b,, 

in R, such that (al +a,+lbl,...,a, +a,+lb,)E Um(R”). 

If such integer does not exist, we set w(R) = cc. A ring R is said to be an Hl-ring 

(see [13]) if the following property holds for all integers k, 1 such that 122, k > 1: 

for any family of k surjective linear forms fi : R’ + R, there exists OE R’ such that 

fi(U)ERX, for i = l,..., k. 

A ring R is called an S(n)-ring (see [17]), n 22, if there exists a family of n 

invertible elements of the center of R, such that all partial sums formed with these 

elements are invertibles. We say that the ring is S(CO) if it is an S(n)-ring for all n, 

n>2. 

Remark 1.1. (1) The notion of Hl-ring was introduced by Guin in [ 131 to get a 

stability result for the genera1 linear group with trivial coefficients, and used by Akef 

[l] to get a stability result with coefficient in the adjoint action. 

(2) The notion of S(n)-ring appears in the work of Nesterenko and Suslin [17] and 

allows them to relate the homology of GL, of an S(m)-ring with the homology of its 

affine group and deduce from this a result of homological stability (depending of the 

stable rank) for the genera1 linear group over this kind of ring. 

(3) If R is Hl, then v(R) = 1. 

Example 1.2. The fundamental example of Hl-ring is a semi-local ring with infinite 

residue fields. The division algebra of real quatemion is H 1. Notice that in the com- 

mutative case the condition Hl implies S(oc). 
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Before going further, we want to introduce a more geometric way for understanding 

Hl-rings. Let R be an HI -ring. We call a free direct summand of R”, n E k4 - {0}, 

a subspace of R”. A subspace of rank n - 1 will be called an hyperplane of R”, and 

a rank one subspace will be called a line. So the geometric interpretation of an H l- 

ring is the following: let n 2 2 and let Hi, with i = 1,. . , m, be a (jinite) family oj 

hyperplanes in R”. Then there exists a line L which is a common complement to each 

H,. For fields, if R is Hl, we denote by P(R) the set of lines in R”+l, and we call 

it n-dimensionnal projective space. In the following we assume that R is an Hl-ring. 

Definition 1.3. A (k+ I)-tuple (ua ,..., uk) of points in P(R) is said m-generic, for 

m 5 n, if for all t 5 min(m, k), every subset of {~a,. . . , ok} with (t + 1) elements spans 

a t-dimensionnal projective subspace in P(R) (i.e. a subspace of dimension t + 1 in 

R”+’ ). 

Note that for Hl-rings, we have the famous result. 

Proposition 1.4. Let R be an HI-ring, and n 22. rfi = (~1,. . . , urn}, m <n, is a free 

part of R” such that the free module L, of basis t, is a subspace of R”, then there 

exists a finite subset C of R” such that i u C is a basis of R”. 

Proof. By definition there exists an R-module A4 such that L @ M = R”. Thus M is 

stably free, and by [23, (2.11) pp. 292, 2961, M is free. Taking C as a basis of M, 

we get the result. I7 

We now introduce the analog of the complexes of [ 191, 

Definition 1.5. (Normalized and generic complexes). 

(1) We define C,(n) as the free abelian group spanned by the t-tuples (~0,. . , 0,) of 

points of P(R), subjected to the normalization condition (00,. . . , v,) = 0, if Vi = u;_ 1 

for some i, 1 5 i 5 t, and such that: if ai,, . . . , vik are linearly independent in R”+‘, then 

they are a basis of a subspace of R”+‘. 

We can now construct the following complex augmented over Z: 

... +ck(n) -% c&j(n)+ .” -CO(n) 2 z+o 

where dk(uo ,..., z’k) = ~,k_o(-l),(vg , . . , v^iy . . . , uk). (with the usual notations) We call 

this complex C,(n). 

(2) We define C*p,,,m (n) as the subcomplex of C,(n) spanned by m-generic tuples. 

Remark 1.6. In (1.5) the complex C,(n) is a quotient of the standard simplicial com- 

plex constructed over P”(R). 

The most interesting application of Hl-rings is the following “crucial” lemma, 
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Lemma 1.7. If m <n, the complex C?“,“’ (n) augmented over Z is acyclic. 

Proof. The proof is standard, we must show that every cycle is a boundary. 

Let z E CkgenTm(n), a cycle, then z = xi,, ni(vo,i, . . . . Vk,i), TZi E z, Vi,j E P”(R) and 

card(Z) < cc. We want UE P(R) such that (v, Vo,i,. . . , Vk,r) are m-generic for all i. For 

each m-generic tuples (uo,;, . . , vk,i), we construct all the m-generic configurations that 

we complete in hyperplanes of R”+’ (depends on whether m < n or not). As R is 

Hl, this finite family of hyperplanes has a common supplement of rank one, thus an 

element v of P”(R), which, by construction, is m-generic with (vo,~, . . , uk.j), and if 

5 = C&I Q(U, uo,i, . . .1 vk,j)EC~n;“(n), then &+,(z”) = Z. tl 

1.1. Study of the associated spectral sequence 

In the following, G denotes GLj(R) and C, denotes C,(2). For group homology we 

refer to [7, Section VII.5, pp. 168-1701. Since C, is acyclic, we have a (transposed) 

spectral sequence 

E2’.4 = H,(G; Cq) =+ H,+JG; Z). 

Our goal is to show that we have an embedding H3(G&(R); Q) + Eg? 0, and 

deduce from this that we have an injection Hj(GLz(R); 0) ++ Hs(GLs(R); Q), where 

the last map is induced by the stabilization morphism GLz(R) H GL3(R), 

For this we investigate our spectral sequence in low degree, and we obtain the 

following results, which is the first step of our investigation. For computations of the 

differentials, and some complements on groups homology, we refer to the Appendix. 

First, take a look at Ef,o, and EL, ,. 

1.1. Computation of Ei,O. We have CO = Z[G.so,o] with so,0 = ([el]). Subsequently, 

BO,O = StabG@O,O) = 

RX * 

0 G.b(R) 

thus H,(Bo,o;Z) % H,(RX x GLz(R);Z). As CO = IndiQ,OZ, it follows that Ej.o Z? 

Hp(RX x GLz(R);Z) and by construction dbO = 0. 

1.2. Computation of Ej, ,. We have Cl = Z[G.sl,o], where ~1.0 = ([e1],[e2]). 

&,o = St&Asl,0> = 

Ci = Indg,,OZ, 

RX 0 * 

0 RX * 

0 0 RX 
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and then, 

E;,, 2 Hp(LQ Z) 2 HP(RX x RX x RX; z). 

Since dl(sl,o) = ([ezl) - ([ell> = (w - l).([e~l), with 

0 -1 0 

w= i 1 0 0 0 0, 1 I 

and B,,a<Bo,a. We are in the hypothesis of (A.1) and w-‘(RX x RX x RX)~= 

R”xRX xRX. Thus 

d;,, =cor~~:~ o (w-’ - I). (1) 

We can now state the first main result, 

Proposition 1.8. We have Hs(G&(R); Q) q Ei,o $ Q. 

Proof. The strategy: We want to construct a surjective map (split by the induced mor- 

phism in homology by G&(R) ++ G&(R)) from Hs(R ’ x GLz(R>; Q) (s Ei,o I$? Cl) 

to H3(GL2(R); CO) and show that its kernel contains Im(d$ ) ~8 Q (= Im(cor o (w-’ - 

1)) c$ Cl), this will show that H3(G&(R); Q) is a component of%& C$ Q. Recall (cf. [7, 

(6.4)(ii), p. 1231) that if A is an abelian group, we have an isomorphism H,(A; Q) 2 

/‘& (A). For n = 3 (resp. n = 2) this isomorphism is given by a A b A c w c (a, b, c) (resp. 

a A b H c (a, b)), where the symbol c ( ) is defined in Section A.2.1, and its inverse is 

induced by [a)blc] @I 1 H i(u A b A c) (resp. [ulb] @ 1 w $(u A 6)). Denote A, = RX 

for i = 1,2,3, this allows us to control the actions on the different components of 

the “torus” RX xRX xRX. By Kiinneth ([7, (5.8), p. 1201 or [24, (6.1.13), p. 1651) 

applied to (A I x AZ) x A3, we get 

H~(AI xAz xAi;Q)+f(A, xAz)@/f$, xAz)@A3 

And, in the same way, 

H3(RX xGL2(R);~)~~~(R”)~~~(Rx)~RX 

@RX 8 Hx(GL(R); Q) @ H3(G&(R); 0). 

Our goal is to describe 

car 0 (w-’ - l):H3(AI xA2 xA3;Q)+H3(RX x GL2(R);Q). 
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H;(‘%(R); Q 

Fig. I. 

We have four projections: 

p1 : H3(RX x GLz(R); Q) --f r\‘, (RX ), induced by pr, : RX x GL2(R) --f RX, 

pz:H3(RX xGLr(R);Q)--~~(RX)~Rx: induced by 

(class of [(c(l,g1)l(a2,g2)1(~3,g3)1~ I>- ~(EI Ae)@detg3, 

p3 : H3(RX x GLz(R); 0) ---f RX @ Hs(G&(R); Q) induced by 

(class of [(s1~,g~)l(~2,92)/(~3,93)1~ l)++a~ @(class of [g21931~l)r 

p4 : H3(RX x GLz(R); Cl) + Hs(G&(R); Q), induced by 

pr, : RX x GLz(R) * G-b(R). 

We want to construct maps cpt, (~2, cp3, (~4 and ~1, ~2, Q, ~14, where their relationships 

are shown in Fig. 1. We then have 

thus, 

coro(w-’ - 1) = (PI @ p2 @ p3 @ p4) 0 (cpl CE (p2 @ cp3 @ (p4) 0 (w-’ - 1). 

Since A3 represents the last component unaffected by the action of w-t, we have 

(w-l - 1) 1/1&l)= O. 

Then it is just necessary to compute qt, ~2 and (~3, and the Ml. Begin by constructing 

CQ. We want to go from H3(RX x GLz(R); 0) to Hx(GLz(R); 0). Define the following 

maps: 
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aI :,&(RX)+H3(GLZ(R);Q) induced by a- (i y), split by det :GL2(R)-,RX; 

H&R” x R” ; Q) 

is given by the factorisation 

The map, RX &I Hz(G&(R); Q) 13 H~(GLJ(R); Cl!) is constructed as follows: 

(I ) First, we have x; given by 

Rx@ /i$(R”) ) H,(GL,(R); Q) 

H,(R” x R”; Q) 

(2) We also have the map rxy given by 

H3(Rx x CL,(R) ; Q) 

In the above diagram (1) is given by the shuffle product, because K*(R) i--i 

Hz(GL2(R);Z). But (2) is induced by the “product” map RX x G&(R)+ G,&(R), 

(A,g)++i.g. 
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Explicitly, 

Remark 1.9. As we know K~(R)Q is identified with &(&(R); O), where 

%WdW; Q) is a useful notation for Ho(RX; Hz(SLZ(R); Q)), and in fact 

W%(R); QP) of H2(GL2(R); Q) by (A.8( 1)). Furthermore by (A.7) we have 

RX@&(SLz(R); Q) - H#%(R); Q), 

where the maps come from RX x S&(R) -+ G&(R), (I., y) H kg (cf. (A.7)). 

Then define cy3 as follows: 

a3(a @ (b A c) + a’ @ {h’, c’}) = %;(a @ (b A c)) + g&i @ {by}). 

Lemma 1.10. For all a,b,cERX, set z = a@(bAc)-b@(cAa)+a@{c,b}-b@{a,c}. 

Then 23(z) = 0. 

Proof. Observe first that if i E RX, y,g’ E GLz(R) are such that, 

,,,,(; ;J(; ;) 

pairwise commute, then, 

Moreover, for all a, b, c E Rx, 

We have 

ct3(u 8 (b A c) - b @ (c A a)) 
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Let 

then, using the relations above, we have 

In the same way, we see that 

z3(a @ {c, b} - b @ {a, c) > 

-ac((a; p)(: :).(; cYl)); 
and by adding to z’, we get Q(Z) = 0. 0 

Note also that 

= CQ(C ~3 (a A 6)). 

And finally set x4 = IH,(G~~(R);Q). Recall that 

i b 0 0 a 0 0 0 0 1 
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Denote, 

CJ, +v-’ - “I/y, (A, x&Y 
a*=(Wl - “Ifi, ( Al XhN3xA3) 

and 

CT3 = (w-l - 1)1 (Al XAZ,@K, (A,)’ 

We have. 

61 : &(A, xAz)-&(A, xA2) 

wKQ(A, xAz)@A3-&(A, xAz)@A3 

((~,b)r\(c,d))~e~((b,a)A(d,c))~e - ((a,b)A(c,d))@e 

03:(A1 xA2)&.43)+(4 xh)X&(A3) 

(a,b)~(CAd)~(b,a)~(cAd)-(a,b)~(cA~). 

We now construct the maps cp/. We have 

H3(A, xAz;Q) 

the second map is induced by Ai x A2 + RX x GL2(R), 

h 0 
(a,b>- 4 o 1 i( 1) 

Explicitly we get, 

=c((al,(: :)),(a2,(“; :)),(~3,(: e))) 
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PI ~~,((~1,~1)~(~2,~2)~(~3~~3))=~1 Aa2Aa39 

p2O~,((a,,bl)A(a2,b2)~\(a3,b3))= ;((a, Aa2)@b3 -(a2Aa1)@b3 

+(a2 Aa3)@bl - (aI Aa3)@b2 

+(a3Aal)@b2 - (a3 Aa2)@h) 

=(a1 h2)@b3 +@2Aa3)@h 

-(a1 Aa3)@b2, 

We have 

H3641 xA2 xA3;Q, 

the arrow (1) is given by the shuffle product, besides (2) is induced by 

Explicitly, 

We then have 

37 

PI 0 cp2((@, b) A Cc, d)) @ e) = 0, 

p2 0 cp2((@, b) A cc, d)) @ e> = (a A c> @ e, 
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=a~(dAe)+a~{e,d}+c~((eAb)+c~{(b,e}, 

p4 0 m(((a, b) A Cc, @I @ e> = a2((b Ad) 8 e>. 

We have 

H3t.41 xA2 xA,;Q) 

explicitly, 

And by combining with the projections, we get 

Pl 0 cp3((a,b> @ cc AdI) = 0, 

~20cp3((a,b)~(cAd))=O, 

=u@(cAd), 

~4 0 cp3((a,b) 8 (c Ad)) = ~3((a,b> EJ (c A d)). 

Denote (w-l - l)(x) by X, then a routine (if somewhat tedious) calculation shows 

that n(cor(X)) = 0. In other words, Ker (n) > Im(di, , ) and TC is a split sujection, thus 

Im(d:.,) n Im(H3(G&(R); 0)) = 0, and this ends the proof of Proposition 1.8. 0 
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/ 

k + 4 

[ e3 I/ k1+e31 
11 ;;:‘;-- I% + e31 

M 
kl 

[e,l - M - k, +ei _ 

\I <::I 
k31 

5 ---+ k+4 

M 

Fig. 2. 

1.3. Proof of ET0 = Ez 0. It is necessary to divide the proof in technical steps, the 

global strategy is’close ;o Sah [19], and is as follows: the first dzjferential ending in 
E& is d&. Proposition 1.20 shows that E,z 7 Z[i] = 0 and then di,z $$ Q = 0. It 

follows that E& @ Q g E& @ Q. The differential abutting to E:,, is di,3. We prove 
z h 

in (1.19(2)), that Et,3 C$ Z[i] = 0. Then Ef,3 F Q =O, di,, T Q = 0 and subsequently 

E& @ Q ” E&. As the spectral sequence is of the jrst quadrant, the last difSerentia1 
z 

involved in the computation of E,yO is di,4. We show, once again, that E& = 0, thus 
Ei 4 = 0 and then di 4 = 0. The crucial step in this last result is Proposition 1.13. 

For the good understanding of the different n-cells (0 < n 5 3), we give the dia- 

gram shown in Fig. 2, in which each oriented path shows a “representative” n-cell 

(0 < n 5 3), and LY is an element of RX - {I}. 
First, we need a description of the terms EL,2, and EL,3, of the spectral sequence. 

In the following, we will use implicitly (1.4), the “Eckmann-Shapiro lemma”, the 

Proposition A.2, and the following theorem (see also [13, (2.2.2), p. 401): 
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Theorem 1.11. Let R be an S(m)-ring, and G1 be a subgroup of GL,(R) and GZ be 

a subgroup of GL,(R), assume that GI or G2 contains the group of scalar matrices. 

Let A4 be a submodule of M,,,(R) such that GIM = M = MG2, then the imbedding 

induces an isomorphism in homology with coeficients in Z. 

Remark 1.12. For the proof of (1.1 1 ), as R is S(m), we use Proposition 1 .lO of [ 17, 

p. 1251, and next we rewrite, word for word, the proof of Theorem 1.9 of [22, p. 2111. 

1.3.1. Computation of E$. We have 

C, = 6 Z[G.s2,j] 
i=O 

where 

s2,0 = Ue11, [e21, [e3lh 

s2, I = ([elk [e21, [el + e21>, 

s2,2 = ([et], Le21, IelI), 

B2,; = Stabc(s2,i). 

Then 
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Thus, 

E/1.2 ” @ Hp(&,i; Z> 
i=o 

“H&RX x RX x RX;Z)2,0@H,(RX xR”;Z)~,, @H,(RX xRX x RX;Z)2,2, 

where the indexes indicate of what type of cells the group homology come from. The 

computation of the differential is as follows: 

d2(~2,0) = Ue21, [e31) - (Cell, [e31) + ([al, [e21> = ($O - 4,’ + 1 >.sm 

with 

Then, for zo E H,(RX x RX x RX; .Z)~,O, we have, 

c$,(z0) = corii:i 0 ((Zaps)-’ - (z~,~)-’ + 1)~~. 

Let 

d2@2,1)= (lYe21, [el + e21) - ([elk [el + e2]) + ([el], [e2]) = (#I - 5;’ + l)..~,,~~, 

with 
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If z1 EHJR~ xRX;Z)2,1 then, 

L$*(z, ) = car;;;; 0 ((+‘)-’ - (z?‘)-’ + l)z,. 

As z T,‘, 7:” act trivially on H,(RX x R ‘;Z)T.,I, we see that d&(zl)=zl. Next, 

d2@2,2) = (Le21, [elII + ([elk [e21> = (tf2 + l).s1,0, 

with 

If z2 E H,(RX x RX x RX; Z)~,J then, 

4j2(z2) = car;;:; 0 ((Tt2)-’ + l)z2. 

And this gives a complete description of dL.2. 

1.3.2. Computation of Ei3. See Fig. 2 for the representatives of the 3-cells. We have, 

C3=&Z[G.S3,i]CE W%, 121 

i=O 

with 

s3,o = ([elk [e21, ie31, [el + e2 + e31>, 

s3,1 = ([ell,[e2l,[e31, [el + e2lh 

s3,2 = ([elk [e2l, [e31, [e2 + e3b 

s3,3 = ([ell, Le21, Le31, [el + e31>, 

s3,4 = (ied, [ezl, Le31, ielI>, 

s3,5 = Uell, [ezl,[e31, [e21), 

s3,6 = ([elk real, [el + e21, [e31>, 

s3,7 = ([ed,[e21, [el + e21, [elIIT 

s3,8 = ([elk Le21, [el + e21, Lea]), 

s3,9 = Uell, Le21, [ed, [e31), 

s3,10 = (IelI, fe21, [Ed I, [Ed + e21h 

~3.11 = ([elk ie21, ielI, [e21>, 

$12 = ([elk [e21, [el + e21, [el + ae21). 
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Denote by B3,; the stabilizer of ~3,~ in G, 0 5 i 5 11, and by B;. ,2 those of s;, ,z. We 

then have, 

B3,4 = B3,5 = B3,9 " RX x RX x RX, 

Bj,,= (ie % ;) EG, ~,~~Rx)=B~,*=B;,,~=B~,,~, 

B3.11 = 

Hence, 

.& "H,(RX;Z)3,0@Hp(RX x RX;Z)3,1 

63 H,(RX x RX; Z)3,2 $ H,(RX x RX; iQ3 

G3 Hp(RX x RX x RX; Z)3,4 @H,(RX x RX x RX; TQs 

@H,(RX xRX;Z)3.&Hp(RX xR~;Z)~,, 

@H,(RX xR~;Z)~,&H~(R~ x RX xR~;.Q,~ 

@H,(RX x RX;Z)3,,0@Hp(RX x RX xR~;Z)~,,, 

8 @ H,(RX xRX;Z).(cc) 
rE/?X-{I} 

For the differentials, we get the following, 

3,o 
d3(s3,0) = CT, - z2 3,0 + G,O - l).S2,0> 

, 

as RX is central in G, the action is trivial, and if 20 E H,(RX; Z)3,0, we deduce that 

$j(ZO) = 0. 
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Let d3(~3,1)=(5:” -T:.’ - 1)..~2,~ +s2,,, with 

Ifzt E Hp(RX xRX;Z)3,1, then 

4,3(ZI)=cori::i: o(($‘)-’ - (+‘)-’ - ljz, @3cor~:::~,. 

We have 

d3(S3,2) = (-7, 3,2 + G2 - 1 ).s2,0 + 5:~*s2,,, 

where 

If z2 E H,(RX x RX; 2)3,2, then 

4,3(z2) = tori::: 
32 -1 

0 (-(2;v2)-’ + (T2’ ) - 1 )z2 CI3 tori:: 0 (z~~~)-‘z~ 

AS T:‘~ and 7:‘” acts trivially on H,(RX x RX; Zj3.2, we deduce c$‘~(z~) = cori::(-z2) @ 

cor53.3 ‘*,’ o(T:‘~)-~zz. We have &(s~,J)=(T~‘~ + T:,’ - I).s~,o - T:‘~sz,~, where 
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+ [i 8 % j, (T?3)-l= [; I ; j. 
If z3 E H,(RX x RX; Z)3,3, then 

&(z3)=cor$j o((+~)-~ + (7iz3)-’ - 1)~~ &rcori::: 0<-(4~)-~)2~. 

Let 

3,4 
d3(S3,4) = (7, - l).sz,o + (-7ia4 + l).s2,2, 

where 2f34 = $“, 2i14 = T:‘. Ifzb E H,(RX x RX x RX; Z)3,4, then 

c$j3(z4) = tori::: 0 ((~f,~)-’ - 1)z4 G? tori:;: 0 (-(~:.~)-l + 1)~~. 

Let 

3,5 
d3(S3,5) = (-71 - 1 ).s2,0 + 7:~5~2,2, 

where T:,~ = z;,‘, ~2~ = $‘. If zg E H,(RX x RX x RX; Z)~.J, then 

dd13(z5) = corit;: o(-(T:~‘)-’ - l)zs @tori:: o(+~)-'z~. 

Let d3(S3,6)=(7;‘6 - 7y + l).sqJ - s2,2, where 2y=q, 2y=+‘. If z6E 

H,(RX x RX; .i?)3,6, then 

~,3(z6)=Cor~~;: o((7f’“)-’ - (7:6)-’ + l)z6 @a$:(-z6). 

As 7i’6 and Ti’6 act trivially on H,(RX x RX; z)3,6, we deduce that 

~~3(z6)=cor~~:~(z6)~cor~:~(-z6). 

We have 

3.7 
d3(S3,7) = (7, - l).s2,1 + (-7i,’ + l).s2,2, 

where ~5:‘~ = 7f”, 7;’ = 7;‘. If q E H,(RX x RX; Z)3,7, then 

dp)3(z7)=cor~::: o((7~,7)-’ - l)z7@cor~f:: o(-(+~)-’ + 1)~~. 

Let 

3.8 
d3@3,8) = (-7, - l).sZ.l + +8s2,2, 
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where 

If zg E Hp(RX X RX; z)3,8, then 

4~3(z8)=co$;: o(-(7;'8)-' - ~)z8~co~g,,x Bz.2 o(7;.8)-'z8. 

We have 

d3@3,9) =(w + l).s2,0 -s2,2. 

If z9 E H,(RX x RX x RX; Z)3,9, then 

Cq3(z9) = co,;;:; 0 (w-’ + l)z9 @ cor;;;;(-z,). 

Let 

d3(S3,1o)=(W 
I-1 

+ l).s2,0 - s2,2, 

where 

w’ = ( 
01 0 

10 0. 

0 0 -I 1 
If ZIO E H,(RX x RX; Z)3,10, then 

4,3(z10)=cor~~:~,~ o(W' + l)z10 @cori:;$-zlo), 

We have 

&(~3,Il)=(W-' - l).s2,2, 

and if ZII eHp(RX x RX x RX;ZJ3,,,, then 

4~,(zll)=cor~~:i, o(w - 1)~~~. 

d3(4 ,*,=(77 - 7; + 7; ~ l).S&,, 

where TT are matrices of the form 

(with g E G&(R), i E RX ). 
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the action of (~g)-’ is trivial, then dd,3(zy2) = 0, for all z;; E H,(RX x RX; Z). (a). And 

this gives a complete description of df 3. 

’ Now, we can prove the first step, 

1.3.3. 4-acyclicity of Ei,q for 1 5 q 5 4. Recall that we denote the class of L’ E R”+’ 

in P(R) by [v]. The following result is the analogue of [19, pp. 293-2951, with more 

explicit description and different methods 

Proposition 1.13. Ij’R is HI, then C,(2) @ Z 2 Ei,, is 4-ucyclic. 
LG 

Proof. Consider the following exact sequence of complexes of ZG-modules 0 + 

C,p”“(n) A C,(n) + Q*(n) + 0, where Q*(n) = C,(n)/C,g”“(n). For showing that 

C,(2) @ Z is 4-acyclic, it is sufficient to prove that 
nc 

(1) The sequence O+C,g’“(2)$$Z-+C*(2)~~k-+Q,(2)~Z+O is exact. 

(2) Q*(2) g Z is 4-acyclic. 

(3) The map induced in homology by C,p’“(2)g Z --) C,(Z)% Z is 0 in degree 

lower than 4. 

Indeed, applying the homology long exact sequence to (l), we get 

as, by (2), H,(Q,(2)zj$Z)=0 if i L 4 and, by (3), Im(~(C,p’“(2)~~z)-H,(C,(2) @ 
nc; 

Z))== 0 if i < 4, we deduce that Hi(C*(2) @ Z) =0 for i 5 4. Next, we prove these 

three results, under the hypothesis of the pryposition (cf. [19, (3.4), p. 2931): 

Lemma 1.14. The .yequencr 

0 i H;(G; C?(n)) + H,(G; C,(n)> + Hj(G; Q*(n)> + 0 

is exact, $2 i > 0, n 2 1. 

Proof. For all i > 0, C,(n) ” Cr @Q;(n). As this decomposition is compatible with 

the action of G, we get an exact sequence of ZG-modules 

0 4 C*gen(n) + C,(n) + Q+(n) ----f 0 

split as a sequence of ZG-modules (the splitting is not compatible with the differen- 

tials). Then we deduce the desired exact sequences. 0 

Lemma 1.15. Q*(2) $3~~ Z is 4acyclic. 
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Proof. Let E’,sen, E’, E’,Q be the spectral sequences associated to the (acyclic) com- 

plexes of ZG-modules, C,g”“, C,, Q*, converging respectively to H,(G; Z), H,(G; Z), 

O(=H,(G; 0)). As Q,(2) = Qs(2) = 0, we deduce, E,‘,‘tQ = 0 with t 5 1. 

Next, we shall prove that Ei;e = 0, 0 < t 5 4. By construction, EsT,Q = 0 for all S, t. 

No (nontrivial) differentials come from Ei,‘f. Thus, Ei;f = Eo”;’ = 0. Next we show 

that Eff = 0, and as a consequence we will get E$f = EzQ -0. But 

E;:,e = (RX x RX )2,1 cE (RX x RX x RX )2,2, 

d;;fw>b)3,5) = (a,hc)2,2, 

&$(b,d3,2) = (a,b)2,1, 

hence Ef’f = 0, and this proves the lemma. 0 

Lemma 1.16. The map induced in homology by C,g”“(2) ,“,Z -+ C*(2)gZ is 0 in 

degree lower than 4. 

Proof. We must show that, if z is a cycle in C,g”“(2) $ Z then its image in C4(2) po Z 

is a boundary. Note that C,g”“(2) @ Z % Z. Then a cycle of C,B”“(2) @ Z is a sum of 
ZG HG 

cycles of the form c - c’ where c, c’ are generic 4-cells. It suffices to prove that cycles 

of the type c - c’ are boundaries in C4(2) z~ Z. 

Observe that if x, y E Rx, then 

d~((~e~l,lli,[(i)],C.,,,e,+e2l,[(~)])rl) 

= ([elk Le21, [el + e2 + e31, [e31, [el + e21) @ 1 

- (li.lLIc:l [ (i)lLe3l,iel +e21) 691, 

because if 

0 x-’ 0 

9= -1 1+x-’ 0 

0 0 1 

and 

-y-l 

-xy-’ 

Y 
-1 
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1 

= CeI 1, Ce21&31, [el + 4, 

( K )1) 

X 

g (kl. [ (.$Mkd +e21, [ii)]) 

= (kd [(i) j,lal,Lul +d [(a)]). 

and then, if x, y, x’, y’ E R ’ 

(hlJ4 [ (~)l,le31&~+4) @ 1 

- (kMe2l[ (~$3lSe~ +el) @ 1 

is a boundary in CA(~) pG Z. In the same way, 

,(lo:; [ (~)]&Me~ +eA [(a)]) 

= (,e~~,[(~)l,lr?l.le,+e~~,[(~)]) 

1 d 
I( )I 

1 
X 7 [ed, P21, kl + e21, I 11) x 

Y 0 

1 

= 

( 

k31, [el I, le21, k + e21, 

K )I) 

X 7 

and if n, y, x’, y’ E Rx, then 

4 ((H, [(~~)]J.l.lnI;FI “4, [(-$I) @ 1 

1 
- b31, X 

( K )I , [el I, b21, kl + e21, 691 

Y 

49 
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Let C,C’ be generic 4-cells. We can assume that, 

c = ([ell, [e2l,u, [e31, [el + e2 + e3]> @ 1 

c’ = ([ell, [e21, u’, [e31, [el + e2 + e3]> @ 1 

with 

o=[(i)l and ~~=[(~~)]. 

BY genericity, 6 ,k 1 - a, 1 - B, x - ,8 E RX (the same for M’ and p’). Then 

G(Cell, [e21,u, Le31, [el + e2 + e3], [el + e2]) @ 1) 

= (Le21,c Le31, [el + e2 + e31, [el + e2]) 8 1 

- ([ell, 0, [e31, [el + e2 + e3], [el + e2]> f8 1 

+ (IelI, ie21, Le31, [el + e2 + e31, [el + e21) czz 1 

- ([ell, [ezl, 0, [el + e2 + e31, [el + e2]> @ 1 

+ ([el I, ie21, u, Le31, [el + e21) @ 1 

- c, 

but as 

a([e21,~, fe31, [el + e2 + e31, [el + e21> 

1 

= Le31, ( 1 K )I 1-B , [elk Le21, [el + e2 
I_cc 
1-B 

1 

) 

gz([ell, 0, Le31, [el + e2 + e3], [el + e2]) 

= (Le31. [ (~)],~e~I,~e2l,Ie~ +e21) 

g3Uel1, [e21,4 [el + e2 + e31, [el + e21) 

= (~e~l.~e21[ ( $)]91e31,Lel +e21) 
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we see that c - c’ is a boundary. 0 

And this finishes the proof of (1.13). q 

As an immediate corollary, we get 

Corollary 1.17. E,? = E& = 0 for i 5 4. 

1.3.4. Computations of Ei z and E&. Before we go further, we need some more tools. 

As in [19, p. 29.51, we can filter C,(2) in a natural way, by the subcomplex spanned 

by cells of projective rank lower than one. Therefore, we can use the subcomplex 

spanned by cells of the type (u, v’, u, u’, . . .), v,u’ E P2(R), modulo the action of G, 

this corresponds to ([el], [ez], [el], [ez], . . .). All these complexes are endowed with the 

action of G, and induce filtrations on E,'.. 

Set E' = c2)Ei. with s > 0. (')Ei', is’ the filtration induced by cells of rank lower s, . 
than one, and denote the quotient of "2'E,'. by (')E,,, by (*:")E;,.. , We then have, 

Proposition 1.18. For t > 3 and s > 1, the following sequences 

O+E;, ~~~(~2"~E~~)--tH~-l(~'~E~l.)--t0 

O--t E,f,2 -+ H2('2")E.~,,)--tH,((')E~~,,)~E~, 40 

(5) 

(6) 

are exact. 

Proof. By construction, there exists an exact sequence of complexes 

O+(')E,I.+ (2)E' +(2/')E' S,B S,. -+O 

the homology long exact sequence gives 

. +ff,( (')E,l,)--t E,z, -Ht((2"'E~,,)~H,_l("'E,'.,)~ . . . 

But if (~0,. . , u,) is a cell of rank 1 in C,,, modulo the action of G we can assume 

that it is of the type ([el], [e2], vi,. . , v;_~ ) with IZ 2 1 and U: are elements of the plane 

spanned by el and e2. Thus, if n > 2, 

where S is a sum of cells of rank > 1. But the connecting morphism Ht((*j')Ei,,) -+ 

H,_'(")E~_,) is induced by the differential d, at the level E' and by the projection 
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on the part of rank one. Hence, if t - 1 2 2, the connecting morphism is surjec- 

tive and we deduce the exact sequence (5). As (‘)E’ g (2)Eii for i=O, 1, we have 

Hi((2/‘)Ei .) = 0 = Ho((2”)E,~,,). And the end of the lyng homology exact sequence is 

just (6). Moreover Hc((‘)E1 ) 2 Ez, s,* , . 0 

We can now state the following result, 

Proposition 1.19. 
(1) Ef,,=O. 

(2) E:,s C$Z[$ = 0. 

Proof. We show each step. 

(1) We apply the exact sequence (6) with s = 1. We have (2/1)Ei,, = 0, and (2/1)E;,2 % 

(RX x RX x RX)2,0 ” Ker(Ji,2). We then have 

&$((a-‘b, lj3.2) = @-I, 1, 1): 

d;3((h c)3,6) = (h b, C>, 

hence ~~,,((a-‘b,1)3,2 + (b,c&)=(a,b,c) for all a,b,cERX. Thus Im(ai,3)= 

Ker (d;l,,), consequently Hz((~/‘)E~,.) = 0, and finally Ef,2 = 0. 

(2) We use (5) with t = 3 and s = 1. Show first that k&((l)Ei,,)~ Z[$ = 0. The 

computations gives 

(‘k,’ 2 = (RX x RX)*,, $ (RX x RX x RX)2.2, 

8,2((al,bdu @ (a2,b2,eh) = (a,bzaz,albzaz,blc~),,o, 

Ker($,2) = {(a-‘b-‘,c-2)2.~ @(a,b,c)2,2, a,b,cERX}. 

We then have 

-1 
4,3((a> b)3,8) = W2, b-2)2,l + (a, a, 612.2, 

d;3((a,b)3,lo) = (a-‘,~ -‘,b-’ )2,2, 

hence, 

(a2,b2) s OmodIm(d;‘s), 

d;‘,,((b-‘a-1,c-2)3,10 + (b,a, 1)3,11) = (ub,ab,c%,2 + (ab-‘,ba-‘, 1)2,2 

= (a2, b2,c2)2,2 . 

This proves that (Ker (j;,2))2 = Im(ai,3). Show next that H3((2/1)Ei,,) C$ Z[i] = 0. The 

main idea is the following: 

Suppose that we have abelian groups A, B, C with 

f 
AiBAC, go f =0 and B=&Bi. 

i=l 
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Suppose there exists a fixed j E { 1,. . . , N}, such that for all x E Ker (g), there exists 

y E B.i and )2 > 1, such that PZX G y mod Im(f). Then it suffices to show that g(y) = 0 

implies n’y = 0 for a particular IZ’ 2 1. Begin the proof by the computation of some 

differentials that we need to get relations in H3( (2/‘)E; .). Consider the following se- , 

quence: 

(2/l)El 
l,4 

3 (2/I)EI G (2/l)El 
I.3 - 1,2 

we can see that 

Ker(~~,3)C(RX)3,0$(RX xRX)3,1@(RX xR~)~,~$(R~ xRX)3,3 

@(RX xRX xR~)~,~@(R~ xRX xR~)~,~ 

@(RX X RX )3,6 CI3 (RX x RX x RX)3,9. 

As the action of RX is trivial in homology, d,, _ -I -id on the 2-generic component, thus 

we can ignore (RX )3,0 . Set B = Im($,). Explicit calculations show that 

(a, a, a>3,4 = 0 mod B, 

(b,a)3,6 @ (a-l,b-l,b-')3,4 @(u,b)3,2 E OmodB, 

(&a)~2 @ (a-2,b-2,U-2)3,4 @ (u,b)3,3 = OmodB, 

(a,b)3,1 @ (a-',b-')3.3 @ (%hU)3,4 ?d (~-‘,u-‘,6-‘)3,5 = OmodB, 

(Gb)3,1 @ (U,b)3,6 f Omod B, 

(a2,b2)3,3 @ (b ,u,u)3,5 = OmodB, 

(~-l,~-l,b-l)3,5 @(a2,b2)3,2 s OmodB, 

(a,hc)3,4 @(b,c,a)3,5 $(u,b,c)3,9 f OmodB, 

(b, a)3,2 EB (u.bh.3 f Omod B, 

(u2, b2)3,6 @ (a-l+ -',b-l)3,9 E OmodB, 

(X,X -I, 1)3,9 = OmodB, 

(1,x,x-‘)3,5 = OmodB. 

From (11) and (16) we deduce 

(a’, b2)3,1 CE (u,u,b)3,9 = Omod B. 

Putting (15) in (9), and adding the square of (7), we get 

(1,x2, 1)3,4 = OmodB. 

By (14), we have 

(u2, b*, b2)3,4 E (b-2, b-*, a -2)3,5 CEI (ue2, be2, b-*)3,9 mod B. 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 
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But with (8), we have 

(a2, b*, b2)3,4 G (b *,u*h,b cI~ (a*, b*)3,2 mod B 

r(b,b,a)3,9~(a,b,b)3,5modB by (13) and (16). 

If we substract these two last relations, we get 

(b2a,b3,a2b)3,5 $ (~*b,6~,nb~)3,9 E Omod B; 

and by using (18) with (17) 

(1,a2b4,ab2)3,9 @ (b’a, b 4u2, 1)3,~ = 0 mod B, 

thus 

(1,x2,x)3,9 f (x-‘,x-~, 1)3,5 modB. 

Squaring (10) with a = 1 and using (20), we get 

(l,b*h @ (l,b-*)3,3 EE (1, 1,bm2)3,5 E OmodB, 

thus with (12) and (19), 

(l,l,b-‘)3,9 @((b, 1,1)3,5 + (1,1,6-*)s,s) s OmodB; 

hence 

(21) 

(I, l,b)3,9 = (b, l,h-*)1,5modB. (22) 

And by combining the previous results, we get 

(a2,b2,~)3,9~(1,a2b2,c)3,9modB by (17) 

zz (l,&&zb)3,9 + (1, 1,u -‘bP’c)3,9 mod B 

E (~a-*b-~,a-~b-*,u*b~c-~)3,5 modB by (21) and (22). 

Call a component (3, i) an element of the type (a, b,c)3,;, i = 4,5,9, or of the type 

(a,b)3,i, i=1,2,3,6. 

The previous result shows that, if x is a component (3,9) then x2 is homologous 

to a component (3,5). As by (14), a component (3,4) is homologous to a sum of 

components (3,5) and (3,9), we deduce that if x is a component (3,4), x2 is ho- 

mologous to a component (3,s). If x is a component (3,l) or (3,6) then by (16) or 

(19), x2 is homologous to a component (3,9), and then x4 is homologous to a com- 

ponent (3,5). Finally, if x is a component (3,2) or (3,3), by (12) or (13), we see 

that x2 is a component (3,5). Consequently, if z is a cycle of (*/‘)E&, .z4 is homol- 

ogous to a component (3,5) which is necessarily a cycle. But if (a, b,c)3,5 is a cy- 

cle, d;3((u,b,c)~,~)=(u~2,b-‘c~‘,b-‘c~1)=(1, 1, l), thus u2 = 1 and b-’ =c. Hence 

(u,b,c)3,s=(u,b,b-‘)3,5. But, by (18), (l,b,b-‘)s,s G OmodB. And as (a, l,l):,=O, 

we conclude that .z* E Omod B, and this finishes the proof. 0 
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1.3.5. Computation of E&. The last information we need to prove our first main 

result is the following, 

Proposition 1.20. Ej,* T Z[i] = 0. 

Proof. By (6) with s=2, the term Ei2 is the kernel of the connecting morphism 

H2((2!‘)E; .) A H,( (‘)Ei,,) Thus it is,‘in particular, a subgroup of Hz((~“)E$,.). We . 

have the following sequence of morphism, 

and 

(2:1 ‘E’ 
2.2 ” /\f, ( RX xRX xRX). 

The generic components of (2/1)Ei3 are given by ~3,~ i= 1,...,6 and ~9. ~3.0 giving 

no contribution. We have, 

43((a,u, b) A (a’,a’, b’)j,,) = - (a,a,b) A (u’,u’, b’) 

a;,,((u,b,b)A(u’,b’,b’)3,2)=-(u,b,b)A(a’,b’,b’) 

~~,,((a,b,a)A(u',b',u')3,3)=(b,u,u)A(6',u',u') 

$,((a, b,c) A (a’, b’,c’)3,4) = (b,c,u) A (b’,c’,u’) - (a, b,c) A (a’, b’,c’) 

d;l,,((u, b,c) A (a’, b’,c’)3,5) = - (a,~, b) A (a’,~‘, 6’) - (a, b,c) A (a’, b’,c’) 

&((a, a, b) A (a’, u’, b’)3,d = (a, a, b) A (u’, a’, b’) 

J;,3((u,b, c) A (u’, b’, c/)3,9) = (b, u,c) A (b’,u’,c’) + (a, b,c) A (a’, b’,c’). 

As (2”)E; 2 ” . /$ (RX x RX x RX), we can identify the group H2((2/1)El,,) to 

/\2z(RX x RX x RX) 

NI 

where NI is the subgroup of A2z (RX x RX x RX ) spanned by the following elements: 

(a, a, 6) A (a’, a’, 6’) 

(a, b, 6) A (a’, b’, b’) 

(u,b,u) A (u’,b’,u’) 

(b,c,u) A (b’,c’,u’) - (a, b,c) A (a’, b’,c’) 

(a, b, c) A (a’, b’,c’) + (a,~, b) A (a’,~‘, b’) 

(6, a, c) A (b’, a’, c’) + (a, b, c) A (a’, b’,c’) 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 
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where a, b, c, a’, b’, c’ are elements of RX. We add (25), which is a consequence of (24) 

and (26), because it is useful for the sequel. In the same way, Ht(“)Ei,,) is given by 

the following complex: 

as 

(‘)E;,, ” r\z, (RX x RX x RX )2,2 @ A; (RX x RX )2,1 

(I),$, ” , &Rx x RX xRX), 

we can write the differentials as follows: 

d;‘,,Wv) A b’,b’,~‘)2,2) = (b, a,c) A (b’,a’, c’) + (a, b,c) A (a’, b’, c’) 

i;,2((u,u, b) A (a’,~‘, b’)z,, ) = (a, a, b) A (u’,a’, b’). 

Then, HI((‘)E~,,) is a subgroup of 

A2n(Rx x RX x RX) 

f’J2 

where N2 is spanned by the following elements: 

(b,a,c) A (b’,a’,c’) + (a, b,c) A (a’, b’,c’) 

(a, a, b) A (a’, a’, 6’). 

We note the important fact, that N2 is a subgroup of Nt Then, we can see a relation in 

&(R” x RX x RX) 

N2 

as a relation in H2( (2;“)Ei .). We want to show now, that Ez 2 is killed by 3. We have _ 

the following isomorphism: 

i’ : A2z (RX x RX x RX)+&Rx x RX)@ [(RX x RX)cDRX] @&Rx) 

(a, b,c) A (a’, b’,c’) ii (a, b) A (a’, b’) @ [(a, b) @ c’ ~ (a’, b’) @ c] @ c A c’. 

Set fi1 = t(N, ). Now, we can write the relations (23)-(25) as: 

(a,~) A (a’,~‘) @ [(a,~) C$ b’ ~ (a’,~‘) @ b] @b A b’ = Omodfi, 

(a,b) A (a’,b’) @? [(u,b) @G b’ - (a’,b’) @ b] @ b A 6’ = Ornodti, 

(u,b)A(a’,b’)@[(a,b)@u’-(a’,b’)@a]@uAa’~Omodfi~. 

(29) 

(30) 

(31) 
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Applying (29) with a = a’ = 1, we get, for all 6, b’ E RX , b A b’ = 0 mod I?, . Then we 

can forget /‘& (RX ). Applying (30) with b = b’ = 1, we get 

(a,l)/\(a’,l)=Omodfi~ for all a,a’ERX. (32) 

Next applying (3 1) with a = a’ = 1, we get 

(l,b)A(l,b’) E Omodfir for all b,b’ERX. (33) 

Then we deduce that the non trivial elements of flz (RX x RX ) are the (1,x) A (y, 1 ), 

since by (28) (with c = c’ = l), we have (a, b) A (a’, b’) = - (b,a) A (b’,a’) mod ??, 

Moreover, by using (30) with a = b’ = 1, we get 

(a’,l)@b-(l,b)A(a’,l)modfi,, (34) 

andas, by(29) witha’=l, weget(a,l)@b’--(l,a)@b’modfir. Weseethatevery 

element of IIC~((~“)E:,.) is a sum of elements of the type (1,x) A (y, 1). 

Let z be an arbitrary element of E&. Then by our previous assertions, we can 

assume that, modulo I’?, , z = C n;( 1,a;) A (b;, l), ni E Z, a;, bi E RX. 

Look at z = c n,( 1, ai, 1) A (bi, 1,l) in fiZ (RX x RX x RX ). The computation of cI~,.~ 

gives 

x = dl.,((a, 6, c) A (a’, b’, c’)) 

= (b,c,a) A (b’, ~‘,a’) - (a,~, b) A (a’,~‘, b’) + (a, b,c) A (a’, b’,c’). 

As a special case, if a = c = b’ = c’ = 1, then 

5(x> = (1, b) A (a’, 1) 63 [(b, 1) @ a’ + (a’, 1) 63 b]. 

Moreover, using (31) with b = 6’ = 1 and (32), we get the new relation 

(a,l)@a’~(a’,l)@amodN~, (35) 

then we deduce that 

8~) = c Q(( 1, a, 1 A (b,, 1) @ [(a;, 1) @ bi + (b;, 1) @ a,]) 

=o 

and by (35), implies that 

3 (Cn;(l,ai) A (hi, 1)) E Omod7?1, 

in other words, 32 = 0, and this ends the proof. 0 

Summarizing, we have 
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Corollary 1.21. E,“p, c$) Z[ i] = E& F Z[ i]. 

Proof. First, we notice that d; 0 = 0 for all r > 1. By (1.20) we have d~,2@Z[~]=0, 
k 

then E~O@Z[$]=E&@Z[~]. By (1.19(2)) we have d:,3 @Z[i]=O, then Et,@Z[i]= 

E&?&i]. And fin&y by (1.17) d&=0, hencezE$$~Z[~]=E~,~{Z[~]= 

E:,o 7 Z[$. 0 

Now, we can state the central result 

Theorem 1.22. Let R be a commutative Hl-ring. Then the morphism H3(GLz(R); Q) + 

Hj(GL3(R); CD), induced by GLz(R) + GL3(R), y H (i y), is injective. 

Proof. Denote by &, a ZG-resolution of Z, where, as previously, G = GL3(R). Recall 

that &a =Stabc([el]), and identify GLz(R) with its image in GL3(R), via the sta- 

bilization morphism. Then, GLz(R) < Bo,o 5 G, and we can see L as a Z&J (resp. 

ZGLz(R)) -resolution of Z. 

We have a commutative diagram, 

the different maps are given by the stabilization morphism and the induction [7, Section 

111.5, pp. 67-691. This give us the commutativity of 

(1) 
I&(GMR); Q) A E,q”,@Q z 

(2) T T rz 
H3(GLGV Q) - 

(3) 
%J T Q 

where (1) is the arrow coming from the abutment, induced by the filtration of the 

bicomplex r. $$ C., (2) is induced by the stabilization morphism, and (3) is the map 

of (1.8). 

Summarizing, the injectivity of (3) implies those of (2). 0 

We deduce from this: 



P. Elbaz- Vincent I Journal of Pure and Applied Algebra 132 (1998) 27-71 59 

Corollary 1.23. If R is a commutative Hl-ring, then the morphism iFI,(SL,(R); Q) 

4 H,(SLx(R); Q), induced by GLz(R) w GLx(R) at the LHS level, is injective, where 
H3(SL,(R); Q) is a useful notation for Ha(RX; HJ(SL,(R); a)), with p = 2,3. 

Proof. It is an immediate corollary of (A.8). We have the following commutative 

diagram: 

i%(SLdR); Q) - H3(GLz(R); Q> 

H3(SL3@); 0) - H3(GL3(R); Q> 

the horizontal arrows are injective by (A.8) and j is injective by (1.22). 0 

Remark 1.24. (1) In (1.8) we tensor by Q for simplicity, because in this case for an 

abelian group A, H,(A; Q) G+ & (A). But we expect that the results are also true if 

we use Z[i] as coefficient. 

(2) Notice that the torsions that we found is different from those announced by Sah 

in [19, (3.19), p. 3031. 

2. The relationship with the indecomposable K3 of rings and the homology of SL2 

By [13, Section 4, pp. 57-581, we have, for all n > 0, a morphism constructed in 

the following way: 

HUIWiCZ stabilization obshuction 

(in : K,(R) - MWR); Z> - KdGMR); 0 - cz K,MUV. 

The “obstruction” morphism is given by the composition of E, [ 13, (3.3), p. 50, 

(3.3.2) p. 511 and qn [13, (3.3.6) p. 551. Since R is Hl, KY(R) E K,(R). The K- 

theory product [18, (5.3. l), p. 2801 gives the morphism: 

*LKY(R)+K,(R), n> 1. 

Then, by [ 13, (4.1 .l), p, 581, we know that 

(in 0 h : K:(R) + K,(R) + K:(R) 

is the multiplication by (- 1 >“-‘(n - l)!. As in the case of fields, we define Ks(R)g 

as the quotient K~(R)&~(R)Q. 
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Remark 2.1. Rationally, the composition 

where “can” is the canonical embedding, is an isomorphism. Thus we can identify 

Ks(R)g and Ker ((~3) F Q, and also with Coker ($,) T Q. 

We now prove that 

Theorem 2.2, Let R be a (commutative) Hl-ring. We huve un isomorphism: 

Before proving (2.2), we establish the analog for rings of [12, 5.15(ii), p. 1231. 

Lemma 2.3. If R is an HI-ring, then 

Proof. By (4.8( 1)) we have Hs(SL3(R); 0) of Hs(G&(R); Q), moreover by Guin [13, 

Theorbme 2, pp. 44-451 and by (1.22) we have an exact sequence 

0 + H3(GL2(R); 0) 4 Hs(GLs(R); 0) 5 K~(R)Q + 0 

where rc is the “obstruction” morphism. As we have the isomorphisms: 

H3(%3(R); CD) ” Hs(SL(R>; Q) (‘X8(2)) 

X(R) = E(R) [9, (1.1.11) p. 91 

Hj(E(R); 0) ” K3(R)Q [19, 2.5 (a), p. 282; 

3, (1.6a), p. 5, Section 1.9, p. 61’ 

we deduce that the morphism 7i:H3(.SL3(R); 0) + KE;‘(R)o, restriction of 7c to 

&(&(R); a>, IS onto. Hence, we have the exact sequence 

0 -+ Ker (;C) +Hs(SL3(R); 0) ---f KE;‘(R)a + 0 

but Ker (7i) =&(&(R); Q) n Hs(G&(R); Qp) ( using (1.22)) and finally by (A.8(3)) 

and (1.23) we get Ker(?)=Hs(&(R);Q). 0 

Proof of Theorem 2.2. By (2.1) we have an exact sequence 

0 + Ky(R)Q 3 K3(R)a 5 K3(R)F + 0 

‘See also [22, (5.1) and (5.2), p. 2311. 
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and by using the arguments of (2.3), we get the following commutative diagram: 

0 - iq(SL2(R): Q) - Fi3(SL3(R); Q) --f- KY(R)* - 0 

I y Gz 

where 9 is the inverse of the map Ks(R)Q 2 Hs(SL(R); Q) E Hs(SLs(R); Q), can and 

p are the maps defined in (2.1), and f is induced by the commutativity of the right 

part of the diagram. We conclude by the “five lemma”. 0 

Let 

qra”kKn(R)Q = lm(H,(GLi(R); 0) --7‘ H,(GL(R); Q)) n Prim H,(GL(R); Q) 

for n>O and 1 <j<n. 

Corollary 2.4. We have 

F;rankKn(R)Q CB I? ‘+‘Kn(R)a = K,(R)Q, for 1 5 n < 3 and I <.j < n. 

Here F,,’ denotes the y-filtration of the K-theory [20, (1.5) p. 4931. Before the proof 

of (2.4) we need the analog of a result of [20, Theoreme 2 p. 5021 

Proposition 2.5. [f R is cm Hl-ring, then for i > 1 

(1) KY(R) 3 q!K,(R) (modulo x) where Y: is the Serre chss of abelian groups 

A, such thut there exist an integer m (depending of A) which satisjes ma = 0 if a t A 

und iJ’ p is any prime number dividing m we then have p = 2 or p < i. 

(2) Kii)(R)qp 2 grj,K,(R), E KY(R) Q, where K,(“(R)o denotes the component of 

tveight i ,for the Adams operation Yi. 

(3) Kj(R)$ ” Ki2’(R)~, where Ki2’(R)~ denotes the component of lveight 2 .for 

the Adums operation Y3. 

Proof. (1) In fact we can extend the proof of Soul& [20, 3.3, pp. 506-5071 word 

for word, except’ for the proof of Proposition 3 [20, p. 5071 which is not quite 

complete (see below). For the other parts of the proof we use the results of Guin 

[ 13, Theo&me 1, pp. 33-34, Theoreme 2, pp. 44-45, (4.1 .l), p. 581 and the fact 

that BSL(R)+ x BRX 21 BGL(R)+. For the convenience of the reader we recall the last 

homotopy equivalence. We have [GL(R), GL(R)] = E(R), thus GL(R) is quasiperfect 

[15, (1.1.6) p. 3171; moreover we have a structure of direct sum [15, (1.2.5) p. 320, 

( 1.3) p. 3231. As the ring is of stable rank one, SL(R) = E(R), and then the morphism 

’ D. Arlettaz pointed out this erratum to me. 
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GL(R) -t GL(Ryb e RX has a section s, which is a group morphism. Thus we deduce 

the composition 

SL(R) x RX ‘anx;f GL(R) x GL(R) -% GL(R) 

where can is the canonical embedding, and at the level of the “$-“-construction, we 

get 

BSL(R)’ x BRX --) BGL(R)+. 

And now we can apply [21, (5.3) p. 2321, to get the desired homotopy equivalence. 

For the end of the proof we proceed as follow: denote by hi : Ki(R) +Hi(SL(R); Z) 

the Hurewicz morphism. As for i = 1, the assertion (1) is trivial, we must show that 

for i 2 2, Ker(hi) is in 3. We apply [3, (1.6)(a), p. 51. Then Ker(hi) is killed by 

Ri-1 (cf. [3, (1.3), p. 41 for the definition of the integers RI). Suppose that p divides 

Ri_1, then by [3, (1.3), p. 41, we have p<(y)+ 1 and as iL2, we get p<i. 

(2) It’s because Z$+‘Ki(R)=O [20, Theoreme l(ii), p. 4941 and rationally the de- 

compositions are the same. 

(3) Consequence of [20, Corollaire 1, p. 4981 and of (2). 

Proof of Corollary 2.4. We just prove the case n = 3,j = 2. Denote by h the iso- 

morphism between Ky(R)o and E;Ks(R)o ( consequence of (2.5(2))). Recall that 

we have an isomorphism g :H3(SLj(R); Q) +Kx(R)o. Let p1 =h o tiog-‘, and set 

N = Ker (PI). Then we have the following commutative diagram: 

0 + N ) K3W)a 

PT 

- F;?Ks(R), F 0 

where 1 is induced by the commutativity of the right part of the diagram. Thus 

N = &((SL2(R); d-n). By (1.23), qank Ks(R)gp = H3(GLz(R); Cl) n K3(R)o 

But i?s(SLz(R); Q) = Hj(GLz(R); Cl) n Ks(R)o, which finishes the proof. Cl 

3. Further comments 

In [5, (7.6) p. 6991, Bore1 and Yang proved that in the case of a number field F (or 

F = o), the morphism Pi,n : Hi(GLn(F); a) 4 H,(GL,+l(F); O), is always injective for 

i 2 1 and n > 1. 1 don’t know if the result remains true if we replace F by an infinite 

field [19, Problem 4.13, p. 3071. As there is a dictionary between K-theory and cyclic 

homology (linear groups and Lie algebra, see [16] for instance), we can ask for the 



P. Elbaz-Vincent1 Journal of Pure and Applied Algebra 132 (1998) 27-71 63 

analog of (2.2) in the case of Lie algebra, 3 but this was already done by 

in [8]. Moreover, in this paper he computes exactly the groups involved. 
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Appendix 

For the notations and definitions in this section (and this paper) see [7, Ch. III, 

paragraphs 4-101. 

A.I. Morphism induced in homology viu “Eckmann-Shapiro lemma” 

The context is as follows: let Gi and GZ be two groups, with a morphism p : Gi + G2, 

and Xi (resp. X2) be a Gi (resp. Gz)-set. Suppose there exist xi E& and x2 EX~, 

such that Xi = Gi .xi, with i = 1,2. Denote by Hi the stabilizer of xi in G,. Then 

we can characterize every map cp : Z[X,] + Z[X& such that cp(g .x) = p(g). p(x), with 

g E Gi,x EX~, by its value on xi. Let cp(xi ) = CyEE2 n,gx-2, ny EZ, where n, depends 

of cp and E2 denotes a set of representative for G/Hz. 

Thus the pair (cp,p) induces a map 4: H,(Gi; Z[Xi]) -+ H,(Gl; Z[Xz]), which de- 

pends of p. But by “Eckmann-Shapiro lemma”4 (see [7, (6.2) p. 73]), we can identify 

this map to a map (p : H,(Hi; Z) + H,(H2; Z). The problem is to give a description of 

this map. We now give a generalisation of a result of Hutchinson [14, Lemma 3, p. 

1831. First denote by 2, the image of HI by p. 

Proposition A.l. (1) Let E = f% \GjH2. Then n, depends only on the cluss of’g in E. 

(2) If n4 # 0 then [Z?, :81 flgH2g-‘] -COO. 

(3) The map @ is given by the formula 

where ji is the map induced in homology by p. 

3 It is D. Guin who pointed out this question to me. 

4 Historically the wellknown “Shapiro lemma” was proved by B. Eckmann. 
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(4) If for every g E E, such that ny # 0, 6, < gH*g-’ then 

cp(z) = c ng cO$!,ti,qg-lCj(z). 

gEE2 

Then we can get the generalisation to the non-transitive case, 

Proposition A.2. Let I and J be subsets of N - {0}, Xl,i, X2,j G-sets with (i, j) E I x J, 

Xl,i = G.xl,i, X2,j = G.xz,,, xl,i EXl,i, x2,j EX2,j. Denote by Hl,i (resp. H2,,) the sta- 

bilizer of xl,; (resp. x2,j) in G. 

Let 

$ : @ Z[XI,il + $ ziX2,jl 
iEl jEJ 

Then 

$ : @ H*(ff~,i; z> 4 @H,(H2,j; Z) 
iEI j&l 

is given by the formula 

where Ei,j is a set of representatives of Hl,i\G/Hz,j, the ng are determined by $i,j = 

p’/ o $I o cani (can and pr, may be with indices, denote the canonical mophisms asso- 

ciated to direct sums and products of Z-modules). 

Moreover, if for all g, with ng # 0, we have Hl,i 5 gHz,jg-’ for all (i, j) E I x J, 

then : 

where Ej is a set of representatives of GJH2,j. (Notice that ng depends of I/J, i and j). 

Proof. By (A.l), we know that if Zi E H*(Hl,i; Z), then 

Il/i,j = C n,cor~I:‘,‘::;~~,,,re~~~~~~:~~~~*,,g-’Zi. 

g%, 

By [6, Section 11.12, paragraphe 61, if 

Z E @ H*(Hl,i; n), 
ifZ1 

we have z = Ci,I cani(pI;(z)) and 

4(Z) = C canj(pQ($(z)X 
jEJ 
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where tJ = Ci,I CjEJ canj o pi o t+J o cani 0 pr, . Thus 

We deduce the other formula in the same way. q 

Remark A.3. We leave to the reader the generalisation to the case of groups Gl.i, 

Gz,j, and morphisms pi,j : Gi,i + Gz,j. 

A.2. Decomposition “a la Kiinneth” 

Recall, first, some useful lemmas 

Lemma A.4 Let 1 -+ H 4 G + Q -+ 1, an exact sequence of groups and M a ZG- 

module. We consider the usual action of Q on H,(H; M). Let Q’ u Q. Suppose that the 

action of Q’ on H,(H; M) is trivial. Then, for all n E N, we have Ha(Q; H,(H; M)) E 

Ho(Q/Q’; HdH; Ml). 

Lemma A.5. Let l-+H+G 5 Q + 1 be an exact sequence of groups and M a 
ZG-module. Let K < Z(G) and set Q’ = II(K). Then Q’ acts trivially on H,(H;M). 

Proposition A.6 Let G be a group, A 5 Z(G) and Ha G. Let 

cp:AxH+G 

(a,h) I--+ a.h, 

and suppose that Ker (cp) and Coker (cp) are torsion. Then, cp induces an isomorphism 

H,(G;Q) ” @ Ho g;H,(H;Q) @H,(A;Q) for nL0. 
Fts=il 

Proof. As Ker (cp) and Coker (cp) are torsion, the LHS spectral sequences (with rational 

coefficients) associated to the following exact sequences, 

1 --+Ker(cp)tA x H+Im(cp)+ 1 

1 +Im(cp)+G+Coker(cp)-+ 1 

degenerate, and give the following isomorphisms, 

H,(A x H; Q) ” H,(Im(cp); a) 

Ho(Coker(cp); H,(Im(cp); Q)) g H,(G; 0) 
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for s > 0. Thanks to the following big diagram, 

I -(AnH)xH-AxH 

Coker (cp) : Coker (j) - 1 

we get that Coker (cp) ” Coker (j), thus 

Ho(Coker (cp); H,(Im(q); Q)) ” Ho(Coker (j); H,(Im(cp); Q)), 

but as A is central in G, A/AnH is central in G/H, hence, by (A.4) and (AS), we 

have 

Ho(Coker(j); H,(Im(cp); Q)) ” HO 
( 

$; H,(Im(cp); Q . 
) 

But as H,(A x H; 0) E H,(Im(q); Q), we see that 

Ho 
( 

$H,(AXH;Q~) EH,(G;Q). 
1 

And since A is central in G, the action of G/H on the homology of A is trivial, and 

finally we get the isomorphism claimed. 0 

As a useful example, we have 

Corollary A.7. Let R be u commutative ring and p un integer with p> 1. Let 

‘pP : SLJR) x RX + CL,(R) 

Then ‘pP induces an isomorphism 

H,(GLP(R); Cl) ” @ H,(SL,(R); Q) 63 H,(RX; 0) with II L 0. 
s+s=i? 

We also have, in the case of commutative Hl-rings, the analogue of [ 12, (5.14) 

p. 1221, 
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Proposition A.8. For all n and p we have: 

(1) The morphism Ff,(SL,(R); Q) -+ H,(GL,(R); Q), induced by X,(R) L--) GL,(R), 

is into. 

(2) If R is H 1 then for all q > p, the injection SL,(R) H SL(R) induces an isomor- 

phism 

H,(SL,(R); Q) ” H,(SL(R); 0). 

(3) LfR is Hl, thenfor all p> 1, we have 

&Wp(R); Q> n WH,(GL,-I(R); 0) + H,,(GL,(R); a)> 

E Im(~,(SL,_I(R); Q) + &,(SL,(R); 0)). 

Remark A.9. We can apply the proof of Gerdes, word for word, by using the stability 

result of Guin [13]. Note that in (A.5(2)), the isomorphism is given through stability 

and by the fact that the action of RX on the homology of SL(R) is trivial. This last 

fact is a consequence of the existence of the morphism GL(R) -SL(R), y H q @ 

det (9-l ). 

A.2.1. Some effective topics in group homology 

Let G be a group and A be an abelian subgroup of G. We have a morphism 

car,: : H,(A; Z) + H,(G; Z) (cf. [7, Section III. 8-9, p. 78-801). As A is abelian, we get 

a “shuffle” structure in homology who defined an injective map Y : & (A) + H,(A; Z) 

(split if A is finitely generated) (cf. [7, Section 6.4(i), p. 1231). We write once again 

Y:&(A)--tH,(A;Z) andZ=cor:oY. Ifal,..., a, are elements of A, we will denote 

c(aI,...,a,) =E(al A...Aa,) the image of al A...Aa,,, by E, in H,(G;Z). Then the 

properties of the exterior algebra give to us 

Proposition A.lO. For all integer n 2 1, if al,. , a,,, a{ are pairtvise commuting rle- 

ments of a group G. We have 

(1) c (ala;,..., a,,) =c(al ,..., a,)+c(a\ ,..., an). 

(2) IfoE 6, c (a,cI,,..., a,.,cn)) = &(cr)c (al,. , a,), M?here c(a) denotes the signature 

of’ o. 

(3 ) c () is multilinear alternate. 

Proposition A.ll. Let R be a commutative Hl-ring. We have a split short exact 

sequence 

0 + K2(R) 3 H2(GL2(R); Z) 2 fiz (RX ) + 0 
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with 

split by 

and det split by 

Proof. By [3, Theorem 1, p. 831 H2(GL(R);Z) s I&(R)@ & (K(R)). As R is stable 

rank one, KI(R) = RX and K*(R) = Hz(E(R); Z) = Hz(SL(R); 27). For all p 2 2, we have 

an exact sequence 

0-+~2(SLP(R);Z)-tH2(GLP(R);Z) z Hz(RX;Z)+O. (-4.1) 

Indeed, applying LHS to 1 +X,(R) + G&(R) % RX + 1, we get a spectral se- 

quence 

Es’,,l = H,dRX; J%Wp(R); 0) + Hs+,(GL,(W; 0 

By ([9, (1.1.11) p. 9]), Hi(SL,(R);Z)=O for all ~22. Thus Es”,, =O=E,y for all 

s 2 0. 

Moreover E2q0, = Ei, o = H2 (R x ; Z). We deduce an exact sequence 

because if F. denotes the filtration of the abutment, 

fiHdGL,(R); 0 =FoHdGL,(R); 3, 

since Er, = 0 and EoqP2 = FoHz(GLJR); Z). But E2,, - 

Ei,2, hence EoqoZ = Ei,2, 

2 - 0 and thus no differential perturb 

then we get the exact sequence (A.l). As RX acts trivially on 

the homology of SC(R), at the infinite the sequence (A.l) becomes 

0 --t i$(SL(R); Z) --t H2(GL(R); Z) 2 H2(RX ; Z) + 0 
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and by combining the different isomorphisms, we get the commutative diagram, 

0 - R#L2(R); Z) - d I-MGLM); 2) --/\;(RX)-0 

but by [13, Theoreme 1, p. 331 j (induced by the stabilization morphism) is an iso- 

morphism and by the “five lemma”, K@) C i$(S&(R); Z). By the same arguments 

as in Barge [4, Lemme 3.2, p. 141 we note that the image of the symbol {x, y} in 

Hz(G&(R); Z) is 

(this morphism factorises through %_(SL2(R);B)). The isomorphism from IQ(R) CD 

/$ (RX ) to Hz(GLz(R); Z) is induced by 

Remark A.12 In (A.1 I), we can give explicitely the inverse on the cycles 

c((x :)(i :i)). 
As 

(: :)=(i :)(x01 :); 
we have 

=c((x e).(; e))+c((; ei.(i: :)) 
+q(: :)J: :))+c((: a)(: I)) 
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=c((;: P)(: P))+c((:: P)-(: Y)) 
+((ri :)Jdt :))+c((: :).(i P)) 
+4”n: :)(;I e))+c((i: :)(:i :)) 

as the conjugation acts trivially in homology [7, (8.1), p. 791, conjugating by 

w= 

gives 

C((:, :)(: :))=c((z e);(b pi) 
and then 

q;: K)oi z)) 
maps to ab A cd + ({c,b} + {d,a}). Note 

H2(RX x RX; Z) + Hz(GLI(R); Z) is onto 

case of infinite fields). 

References 

that this is sufficient because the morphism 

(see [ 18, 4.3.6, p. 2061 for a proof in the 

[I] F. Akef, Sur la stabilite de I’homologie du groupe lineaire et de son algebre de Lie, These de doctorat 

de I’UniversitC de Nice, Sophia-Antipolis, 1991. 

[2] D. Arlettaz, The Hurewicz homomorphism in algebraic K-theory, J. Pure Appl. Algebra 71 (1991) 

l-12. 

[3] D. Arlettaz, A splitting result for the second homology group of the general linear group, in: Adams 

Memorial Symp. on Algebraic Topology, vol. I, London Mathematical Society, Lecture Note Series 

175, Cambridge Univ. Press, Cambridge, 1992. 

[4] J. Barge, Cocyle d’Euler et K2, K-theory 7 (1993) 9-16. 
[5] A. Borel, J. Yang, The rank conjecture for number fields. Math. Res. Lett. I (1994) 689-699. 

[6] N. Bourbaki, Algebre, chapitre I i 3, Hermann, Paris, 1970. 

[7] KS. Brown, Cohomology of Groups, Graduate Text in Mathematics, vol. 87, Springer, New York, 

1982. 

[8] J.L. Cathelineau, Homologie de degre trois d’algebres de Lie simple deploy&es &endues a une algebre 

commutative, Ens. Math. t. 33 (1987) 159-173. 

[9] Ph. Elbaz-Vincent, Ks indecomposable des anneaux et homologie de SL2, These de doctorat, Nice, 

1995. 

[lo] Ph. Elbaz-Vincent, Homology of the special linear group and K-theory, C. R. Acad. Sci. Paris, t. 322, 
Serie I(l996) 813-817. 



P. Elbar-Vincent IJournal of Pure and Applied Algebra 132 (199X) 27-71 71 

[I I] Ph. Elbaz-Vincent, Homology of linear groups with coefficients in the adjoint action and K-theory (to 

appear). 

[ 121 W. Gerdes, The linearization of higher Chow cycles of dimension one, Duke Math. J. 62 (1) ( 199 I ) 
105-129. 

[ 131 D. Guin, Homologie du groupe lineaire et K-thtorie de Milnor des anneaux, J. Algebra 123 (1987) 

27-59. 

[I41 K. Hutchinson, A new approach to Matsumoto’s Theorem, K-theory 4 ( 1990) 181-200. 

[I51 J.-L. Loday, K-theorie algebrique et representations de groupes, Ann. Sci. EC. Norm. Sup. 9 ( 1976) 

309-377. 

[16] J.-L. Loday, Comparaison des homologies du groupe lineaire et de son algebre de Lie, Ann. Inst. 

Fourier, Grenoble 37(4) (1987) 167-190. 

[17] Y.P. Nesterenko, A.A. Suslin, Homology of the full linear group over a local ring and Milnor’s 

K-theory, Math. USSR Izvestija 34( 1) (1990) 121-145. 

[ 181 J. Rosenberg, Algebraic K-theory and its Applications, Graduate Text in Mathematics, vol. 147, Springer, 

Berlin, 1994. 

[ 191 C.-H. Sah, Homology of classical Lie groups made discrete III, J. Pure Appl. Algebra 56 (1989) 

269-312. 

[20] C. So&, Operations en K-thtorie algtbrique, Can. J. Math. 37 (1985) 488-550. 

[21] A.A. Suslin, Homology of GL,, characteristic classes and Milnor’s K-theory, Proc. Steklov Inst. Math. 

165 (1985) 2077226. 

[22] A.A. Suslin, Ks of field and the Bloch group, Proc. Steklov Inst. Math. N 3 (1991) 217-239. 

[23] F.D. Veldkamp, Projective ring planes and their homomorphisms, in: Rings and Geometry, NATO ASI 

Series, Reidel, Dordrecht, 1984, pp. 289-350. 

[24] C. Weibel, An Introduction to Homological Algebra, Cambridge Studies in Adv. Math. Cambridge Univ. 

Press, vol. 38, Cambridge, 1994. 


